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The Blueberry Breeding Program

Phenomics
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Background

My research line

Goal
Explore problems at the interface of Statistics
and Genetics.

Developing novel methods and software, or
learn something new compared with existing
approaches.
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Genetic Research enefic Discover it
Production

.~ University of Florida
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Why genomic selection in blueberry?
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Why genomic selection in blueberry?

Importance
e Blueberry is the second most important soft fruit
e Per capita consumption has increased 97% in the past 10 years
® Reason:
o  Delicious !l
o Health benefits
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Why genomic selection in blueberry?

Importance
e Blueberry is the second most important soft fruit
e Per capita consumption has increased 97% in the past 10 years
® Reason:
o Delicious!l
o Health benefits

University of Florida

e UF plays an important role on cultivar development Bz g
Released more than 60 cultivars (from 1970 to 2023)

o
e PLUS ~45 releases in collaboration or directly from our crosses
o

www . blueberrybreeding.com

BREEDING PRO

Physolosofy: breeding & research running side-by-side

.~ University of Florida
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Timeline

How and when do we start implementing GS?

AGHmatrix 1.0
Relationship matrices
updog

Allele Dosage

software
Cellon et al., (2018)
First ABLUP model in blueberry
Ferréo et al., (2018)
First GWAS study
papers

Pre,—
Theory (€NOMICS

Practice

Curated Pedigree
A matrix with 17k lines

Parental Selection via
Mixed Model
EBVs computed for the first time

Genotyping
Probes designed for a target
capture sequence method

Phenotyping 1.0
First diverse population
phenotyped for

traning models

University of Florida
Felipe Ferrao
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AGHmatrix 1.0
Relationship matrices

updog
Allele Dosage

Cellon et al., (2018)
First ABLUP model in blueberry

Ferréo et al., (2018)
First GWAS study

Pre,—
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Curated Pedigree
A matrix with 17k lines

Parental Selection via
Mixed Model
EBVs computed for the first time

Genotyping
Probes designed for a target
capture sequence method
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Timeline

How and when do we start implementing GS? p—

Fruit phenotyping
AGHmatrix 1.0 AGHmatrix 2.0
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Allele Dosage SimpleMating

software Mate allocation
Bem Oliveira et al., (2019)
First GS study =
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Genomic Selection 1.0 ¢

Past and present in blueberry
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Genomic Selection 1.0 ExCebeny

Questions:

Is genomic selection better than phenotypic selection?

What are the best predictive models?

What is the importance of better genomic resources?

Can we unify prediction and discovery in a single framework?

Se

& Breeding Genetics :
Felipe Ferrdo Polyp|oids Metabollz?gl\l,%?

Breeding Program

% Molecular ;‘

Felipe Ferrao

Breeding Program Felipe Ferrao

Breeding Program

University of Florida 15

4
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Genomic Selection 1.0

Questions:

e Is genomic selection better than phenotypic selection?

University of Florida

e Felipe Ferrao

é Molecular

& Breeding

Felipe Ferréo
Breeding Program
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Genomic Selection 1.0

% Molecular
g\% Breeding
Is genomic selection better than phenotypic selection? seipe Ferdo
Background
I;,igal# Stage # Plants Goal
0] 0] ~150 crosses Crossing + Seedlings
1 I 20.000 High-density nursery— Single Plant Selection
2-4 I 2.000 Single Plant Selection
5-9 1l 200 Farm Condition — Experimental design
10-15 IV 20 Regional Yield Trial — Experimental design
16 \Y 1-2 Cultivar Release

University of Florida
e Felipe Ferrao
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Genomic Selection 1.0

< Molecular
g\% Breeding
Is genomic selection better than phenotypic selection? seipe Ferdo
Background
I;,igal# Stage # Plants Goal
0] 0] ~150 crosses Crossing + Seedlings
1 I 20.000 High-density nursery— Single Plant Selection
2-4 I 2.000 Single Plant Selection
5-9 1l 200 Farm Condition — Experimental design
10-15 IV 20 Regional Yield Trial — Experimental design
16 \Y 1-2 Cultivar Release
Challenges
e Time-consuming (15 years -> cultivar)
e High level of inbreeding depression
e Autotetraploid (2n=4x)
Q@ raperemo

18



Genomic Selection 1.0

Is genomic selection better than phenotypic selection?

é’i Molecular
& Breeding

Felipe Ferrdo
Breeding Program

Genomic Selection

Background
I;,igég Stage # Plants Goal
0] 0] ~150 crosses Crossing + Seedlings
1 I 20.000 High-density nursery— Single Plant Selection
2-4 I 2.000 Single Plant Selection
5-9 1l 200 Farm Condition — Experimental design
10-15 IV 20 Regional Yield Trial — Experimental design
16 \Y 1-2 Cultivar Release

J

University of Florida
e Felipe Ferrao

Selecting crosses in early
stages

cycle

Skip stages in a breeding
19
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Genomic Selection 1.0

Is genomic selection better than phenotypic selection?

'.' frontiers
in Plant Science
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Fernando H. Tolsdo,
Intemational Maize and Wheat
Improvement Center, Mexico
Reviewed by:
Gota Morota

Virginia Toch, Unit

University of Florida

Felipe Ferrao

Genomic Selection in an Outcrossing
Autotetraploid Fruit Crop: Lessons
From Blueberry Breeding

Luis Felipe V. Ferrao', Rodrigo R. Amadeu', Juliana Benevenuto',
Ivone de Bem Oliveira'? and Patricio R. Munoz™

Blusbenry Breeding and Genomics Lab, Horiculturel Sciences Department, University of Florids, Gainesuill, FL,
United States, * Hortifut North America, Inc., Estero, FL, United States

Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding
production and consumption worldwide. The blueberry breeding program at the
University of Florida (UF) has greatly contributed to expanding production areas by
developing low-chiling cultivars better adapted to subtropical and Mediterranean
climates of the globe. The breeding program has historically focused on recurrent
phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase
crop, blueberry breeding cycles are costly and time consuming, which results in low
genetic gains per unit of time. Motivated by applying molecular markers for a more
accurate selection in the early stages of breeding, we performed pioneering genomic
selection studies and optimization for its implementation in the blueberry breeding
program. We have also addressed some complexities of sequence-based genotyping
and model parametrization for an autopolyploid crop, providing empirical contributions

GENOMIC PREDICTION

G3. =

Genes | Genomes | Genetics

Genomic Prediction of Autotetraploids; Influence of
Relationship Matrices, Allele Dosage, and
Continuous Genotyping Calls in

Phenotype Prediction

Ivone de Bem Oliveira,** Marcio F. R. Resende, Jr.,* Luis Felipe V. Ferrdo,* Rodrigo R. Amadeu,*

Jeffrey B. Endelman,’ Matias Kirst,** Alexandre S. G. Coelho," and Patricio R. Munoz*"!

*Blueberry Breeding and Genomics Lab, and *Sweet Corn Genomics and Breeding, Horticultural Sciences Department,

University of Florida, Gainesville, FL 32611, "Plant Genetics and Genomics Lab, Agronomy College, Federal University of

Goias, GO, Brazil, 74690-900, §Departmen! of Horticulture, University of Wisconsin, Madison, WI 53706, and **Forest

Genomics Lab, School of Forestry Resources and Conservation, University of Florida, Gainesville, FL 32610

ORCID IDs: 0000-0003-3723-9747 (1.d.B.O.); 0000-0002-2367-0766 (M.F.R.R.); 0000-0002-9655-4838 (L.F.V.F.); 0000-0001-5127-4448 (R.R.A));
0000-0003-0957-4337 (J.B.E.); 0000-0001-8973-9351 (P.R.M.)



Genomic Selection 1.0 ex e ey

Is genomic selection better than phenotypic selection?

Challenges on Quantitative Genetics analyses applied to polyploid analyses
e More genotypic classes -> allele dosage
e Multisiomic segregation -> relationship matrix
e More complex gene actions -> multiple levels of non-additive effects

University of Florida

e Felipe Ferrao



Genomic Selection 1.0 ExCebeny

Is genomic selection better than phenotypic selection?

Challenges on Quantitative Genetics analyses applied to polyploid analyses
e More genotypic classes -> allele dosage

updog R package
e ~20000 downloads
m;; e Inference on allele dosage,
e Accounting by common features
of NGS data

University of Florida

e Felipe Ferrao



Genomic Selection 1.0 ExCebeny

Is genomic selection better than phenotypic selection?

Challenges on Quantitative Genetics analyses applied to polyploid analyses
e More genotypic classes -> allele dosage
e Multisiomic segregation -> relationship matrix

updog R package AGHmatrix R package

e ~20000 downloads
m’; e Inference on allele dosage,
e Accounting by common features
of NGS data

e Pedigree (A), genomic (G) and
hybrid matrices (H)

AGHmMatrix

e Any ploidy level
e Fast and user friendly

University of Florida

4
e Felipe Ferrao



Genomic Selection 1.0

Is genomic selection better than phenotypic selection?

£ Blueberry

Genetic Discove% d
rediction

Challenges on Quantitative Genetics analyses applied to polyploid analyses
e More genotypic classes -> allele dosage
e Multisiomic segregation -> relationship matrix

e More complex gene actions -> multiple levels of non-additive effects
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Additive vs. non-additive
e Multiple gene actions
e Different dominance levels
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Is genomic selection better than phenotypic selection? seipe Ferdo
Back to 2017 ...
e Population: large population (~2000 ind) representing our breeding collection
e Phenotype: fruit quality traits (firmness, size, brix, acidity and weight)
e Models: ABLUP (pedigree), G2 (GBLUP assuming diploid markers), G4 (GBLUP accounting for
allele dosage)

University of Florida
Felipe Ferrao
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Is genomic selection better than phenotypic selection? Felipe Ferréo

Breeding Program

Trait Matrix Accuracy Method
Firmness A 0.375 Pedigree
Firmness G2 0.415 GBLUP (2n=2x)
Firmness G4 o426 GBLUP (2n=4x)

Size A 0.386 Pedigree

Size G2 0.400 GBLUP (2n=2x)

Size G4 0.432 GBLUP (2n=4x)

.~ University of Florida

e Felipe Ferrao
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Is genomic selection better than phenotypic selection? Felipe Ferrao

Breeding Program

Trait Matrix Accuracy Method
Firmness A 0.375 Pedigree
Firmness G2 0.415 GBLUP (2n=2x)
Firmness G4 o426 GBLUP (2n=4x)

Size A 0.386 Pedigree

Size G2 0.400 GBLUP (2n=2x)

Size G4 0.432 GBLUP (2n=4x)

Take-home message

- i (i) Genomic > Pedigree
© oo oA (ii) Use polyploid methods

27



Genomic Selection 1.0

University of Florida

e Felipe Ferrao

Questions:

What are the best predictive models?

Genetics
Polyploids

Felipe Ferrdo
Breeding Program
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What are the best predictive models? Polyploids

Felipe Ferrao
Breeding Program

.‘ frontiers ORIGINAL RESEARCH
3 3 sh y 2020
in Plant Science : ;

RESEARCH

Impact of Dominance Effects on Autotetraploid

Genomic Prediction Exploring Deep Learning for Complex
. v Trait Genomic Prediction in Polyploid
Rodrigo R. Amadeu, Luis Felipe V. Ferrio, Ivone de Bem Oliveira, Juliana Benevenuto, - -
Jeffrey B. Endelman, and Patricio R.. Munoz* Outcrossing Species

Laura M. Zingaretti™, Salvador Alejandro Gezan?, Luis Felipe V. Ferrao®, Luis F. Osorio?,
Amparo Monfort™, Patricio R. Muiioz®, Vance M. Whitaker*

R.R. Amadeu, L.EV. Ferrio, LD.B. Oliveira, J. Benevenuto, and P.R 8 e Alnio,
and Miguel Pérez-Enciso ™

ABSTRACT Munoz, Blucberry Breeding and Genomics Lab, Horticultural Sciences
Many corr?mercsally important plants are Dep., Univ. of Flor |d:1, Gainesville, FL 32611; ! B. Endelman, Dep. of 1 Centre for Research in Agricutural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain, 2 School of
autopolyploid. As a result of the multiple Horticulture, Univ. of Wisconsin, Madison, W1 53706. Received 28 Feb Forest Resources and Conservation, University of Florida, Ganesvile, FL, United States, ° Blueberry Breeding and Genomics
chromosome sets in their genomes, higher 2019. Accepted 22 May 2019. *Corresponding author (p. ufl.edu Lab, Horticultural Sciences Department, University of Florida, Gainesvile, FL, United States, 4 IFAS Guif Coast Research and
orders of allele interactions can occur, implying Assigned to Associate Editor Carlos Messina, Education Center, University of Florida, Wimauma, FL, United States, ® Institut de Recerca i Tecnologia Agroalimentaries

(IRTA), Barcelona, Spain, © ICREA, Passeig de Luis Companys 23, Barcelona, Spain

.~ University of Florida

e Felipe Ferrao
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Genomic Selection 1.0 XX
What are the best predictive models? Pﬂ_y;:lqids
Background

e Polyploid is complex !
e Most of prediction models are based on linear methods and additive gene actions
e (an we use more elaborate models?

o Bayesian alphabet + mixed models

o Different gene actions

o Deep learning methods that can incorporate non-linearity

University of Florida 30

e Felipe Ferrao



Genomic Selection 1.0

What are the best predictive models?

e Blueberry (5 traits) vs. Potato (2 traits)

.~ University of Florida

e Felipe Ferrao
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Genomic Selection 1.0

What are the best predictive models?

Bayesian vs. Mixed Models vs. Gene actions

e Blueberry (5 traits) vs. Potato (2 traits)

.~ University of Florida

e Felipe Ferrao

2
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Take-home message

£X
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Genetics
Polyploids

Felipe Ferrao
Breeding Program

On the relevance of additive models

32
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Genomic Selection 1.0

What are the best predictive models?

Bayesian vs. Mixed Models vs. Deep Learning

B Blueberry
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:‘—? 0.4 4
L
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& 4 & & «
Q\
University of Florida

Felipe Ferrao

£X
XX

Genetics -
Polyploids

Felipe Ferrao
Breeding Program

Models

Bayessian Lasso
| BRR
[ enneoiploid
. CNN-Tetraploid
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Genetics -

What are the best predictive models? Polyploids

Felipe Ferrao
Breeding Program

Bayesian vs. Mixed Models vs. Deep Learning

Models

Bayessian Lasso
.| emR
I cenn-Diploid
. CNN-Tetraploid

B Blueberry
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Felipe Ferrao

Take home message

On the relevance of additive models? !ll
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Genomic Selection 1.0

What are the best predictive models?

More recently ...

J

New paper using a transformer DL architecture
Similar architecture used by ChatGPT

The authors tested in multiple data set ...
..and made some strong claims !l

Ok, let's test it !l

University of Florida
Felipe Ferrao

) 4
)

Genetics

~
°
S
se

Polyploids

Felipe Ferrao
Breeding Program

GPFN: Prior-Data Fitted Networks for
Genomic Prediction

Jordan Ubbens'"M, lan Stavness" 3, and Andrew G. Sharpel

! Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
2Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada

Genomic Prediction (GP) methods predict the breeding
value of unphenotyped individuals in order to select parental

did. in i Among models for GP, clas-
sical linear models have remained consistently popular, while
more complex nonlinear methods such as deep neural networks
have shown comparable accuracy at best. In this work we pro-
pose the Genomic Prior-Data Fitted Network (GPFN), a new
paradigm for GP. GPFNs perform amortized Bayesian infer-
ence by drawing hundreds of thousands or millions of synthetic
breeding populations during the prior fitting phase. This allows
GPFN:s to be deployed without requiring any training or tuning,
providing predictions in a single inference pass. On three popu-
lations of crop plants across two different crop species, GPFNs
perform significantly better than the linear baseline on 13 out
of 16 traits. On a challenging between-families NAM predic-
tion task, the GPFN performs significantly better in 3 locations
while only falling behind in one. GPFNs represent a completely
new direction for the field of genomic prediction, and have the
potential to unlock levels of selection accuracy not possible with
existing methods.

least as well as newer, more modern methods while be-
ing simpler, faster, and requiring less tuning (Azodi et al.,
2019; Abdollahi-Arpanahi et al., 2020; Zingaretti et al., 2020;
Ubbens et al., 2021; John et al., 2022; Ray et al., 2023).

In this work, we develop a new approach to GP based
on amortized Bayesian inference, which we term Genomic
Prior-Data Fitted Networks (GPFNs). Unlike existing meth-
ods based on neural networks, a GPEN is not trained on the
end user’s dataset, does not require any tuning, and in fact
is never exposed to any real data at all prior to inference.
As a proof of concept, we show that the GPEN is the first
method which is able to consistently and significantly out-
perform classical methods in several datasets of crop plants.
An implementation as well as several trained GPFNs for var-
ious population types are provided at https://github.
com/ jubbens/gpfn. We propose the GPEN approach as
amajor new direction for genomic prediction.
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Genomic Selection 1.0

What are the best predictive models?

Genetics
Polyploids

Felipe Ferrao
Breeding Program

Trait #data points GPFN GBLUP (2x) GBLUP (4x)
\ pH ~3000 0.31 032 0.35
L oL e s ——
enetic Discover
Prediction Brix ~1000 0.28 0.27 0.28
Eucalyptol ~1000 042 0.37 0.40
Yield ~250 033 0.36 -
l. Coffee ..............................................................................................................................................................................
Genefic Research Maturation ~250 on 0.21 -
PrOdUC“on ..............................................................................................................................................................................
Vigor ~250 0.08 0.13 -

University of Florida
Felipe Ferrao

Camila Azevedo. Deep Learning for Genomic Prediction in Blueberry (work in progress). 2023
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Questions:

e Whatis the importance of better genomic resources?

University of Florida

e Felipe Ferrao

é Molecular
& Breeding

Felipe Ferréo
Breeding Program
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What is the importance of better genomic resources? Felipe Ferréo

Breeding Program

GigaScience, 8, 2019, 1-4
n
M og,
CHEORD CIEN< E

COMMENTARY

Juliana Benevenuto ¥, Luis Felipe V. Ferrao, Rodrigo R. Amadeu and
Patricio Munoz

Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida,
Gainesville, 2550 Hull Road, FL, USA

.~ University of Florida
e Felipe Ferrao



Genomic Selection 1.0

What is the importance of better genomic resources?

Background
e Back to 2019, no genome reference for blueberry.
e Available only a poor draft

e C(Challenges:
o Design our genotyping platforms
o Poor gene annotation for gene mining
o Complex to design markers for marker assisted selection (MAS)

University of Florida

e Felipe Ferrao

éj; Molecular

& Breeding

Felipe Ferrdo
Breeding Program
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What is the importance of better genomic resources? Felipe Ferréo

Breeding Program

Good news:
e Started a collaboration with the Michigan State (Patrick Edger)
® Access to a high-quality and haplotype-phased reference genome (Colle et al, 2019)

University of Florida
Felipe Ferrao
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What is the importance of better genomic resources? Felipe Ferrao

Breeding Program

Poor Genome High-quality genome
GWAS
®) |Z QN

~ ~ [0} (P
’a_ © © 7 - : " -4 =
Quw 12 -A C °
g‘ - - . .
| : : .. i "i Ii' poreassoations

1 Scaffolds 13,757
Traits: @scar size @pH Ofirmness @volatile
Gene action: A additive (@©) dominant @ general
University of Florida

41
Felipe Ferrao
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& Breeding
What is the importance of better genomic resources?

Felipe Ferrao
Breeding Program

Poor Genome High-quality genome
(B)_
gu
Slﬂ
O -
2 - -
i More associations
(€)= 2
3 o EO ]
== = o .
8" g1 v Better understanding of the
4 4 3 . . & = =
N N Py ‘ : genetic architecture
. -] A o i
1 Scaffolds 13,757 “4,:) 05,;) 05,:} 05,.7 05’6‘ 05,,0 % g 28 95,:)0 05,:{) 95,:/;’

Traits: @scar size @pH Ofirmness @volatile
Gene action: A additive (@©) dominant @ general

( University of Florida 42
é Felipe Ferrao
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What is the importance of better genomic resources?

Reduced the number of probes (from 30k to 10k) only using bioinformatic

.~ University of Florida

e Felipe Ferrao

o
w

o
H

'L

Predictive Ability
o

o
N
N

§ 7 o
0 L é* $+

firmness fruit scar fruit yield ﬂower soluble

size size  weight solids
Traits

Genome
E3'w8s520'

B8 'Draper’

Molecular
Breeding

Felipe Ferrdo
Breeding Program
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What is the importance of better genomic resources?

Molecular
Breeding

Felipe Ferrdo
Breeding Program

Reduced the number of probes (from 30k to 10k) only using bioinformatic

.~ University of Florida

e Felipe Ferrao

o
w

o
KN

'L

Predictive Ability
o

o
N
N

§ 7 o
0 L é* $+

firmness fruit scar fruit yield ﬂower soluble

size size  weight solids
Traits

Genome
E3'w8s520'

B8 'Draper’

Take home message

Good genomic resources can
help plant breeders
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University of Florida

e Felipe Ferrao

Questions:

Can we unify prediction and discovery in a single framework?

Metabolomics

Felipe Ferrao
Breeding Program
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Genomic Selection 1.0

Metabolomics

Can we unify prediction and discovery in a single framework? Flavor

Felipe Ferrao
Breeding Program

®
PN Phytolooist esearch |
\\ o Ong Check f(

update:

Genome-wide association of volatiles reveals candidate loci for
blueberry flavor

, . ~ 1 . 2 . 1 .
Luis Felipe V. Ferrao * (1), Timothy S. Johnson™* (), Juliana Benevenuto™ (), Patrick P. Edger3 3
2 . . 1
Thomas A. Colquhoun® () and Patricio R. Munoz
lBlueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; 2Environmental Horticulture Department, Plant Innovation

Center, University of Florida, Gainesville, FL 32611, USA; 3Department of Horticulture, University of Michigan, Michigan State University, East Lansing, MI 48824, USA

University of Florida

Felipe Ferrao
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Can we unify prediction and discovery in a single framework? Flavor

Felipe Ferrao
Breeding Program

What is Flavor?

e Flavor is the sum of inputs from multiple senses that inform our brain what we are eating

Volatile
Organic
Compounds
(vocCs)

FLAVOR - taste +
aroma

Taste

*Sweet

Human can
distinguish more
than 1 trillion
different smells

*Sour
ssalty smell/ )
*Bitter Ayoma

*Umami

/
RETRONASAL OLFACTION

.~ University of Florida

e Felipe Ferrao
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Can we unify prediction and discovery in a single framework? Flavor

Felipe Ferrao
Breeding Program

Evidences based on the GWAS analysis:
e Significant SNPs converging to a tower-like structure
e Single markers explaining large portions of the phenotypic variation

e Hypothesis: VOCs are traits with simple genetic architecture

2-undecanone

12 15 18 21

9
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~logso(p)

6
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3
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I T
Chr 1 2

1
2
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T T T T
3 4 5 6 7
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T
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C at e .
T T T
9 10 n 1

University of Florida

e Felipe Ferrao
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Can we unify prediction and discovery in a single framework?

Q’ University of Florida

PC2 (7%)

Felipe Ferrao

PC1 (17%)

| =
*¥Qriginal PopulaTion
*¥GWAS
wwnn: | i 3
¥30 full=sib families

*New Population
*Validation
xGenetic related to POP1

Metabolomics
Flavor

Felipe Ferrao
Breeding Program
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Can we unify prediction and discovery in a single framework?

b

a Z i
°
oo 2bo 05 o }
e L Sy
% ° % o
ofo "o o 8, 'v‘f ;‘Bo
& » o . ) °& o
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o 98 200l
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i o
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POP, ¥
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C
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04-
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% 0.0-
k'l
= decanal eucalyptol geranyl acetone
o
B 0s-
a
0.4
02-
0.0

University of Florida
Felipe Ferrao

Q Scenarios
—» Cross-validation
=» Rep TRN-TST

2.

Molecular Breeding
Scenarios

hexanal

Scenarios

linalool

D-limonene

1

. GS intra-populational

Metabolomics
o Flavor

Felipe Ferrao
Breeding Program
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Can we unify prediction and discovery in a single framework?

b

Q
PC2 (7%)
°

QO scenarios
—» Cross-validation
> Rep TRN-TST

Molecular Breeding
Scenarios

«»

PCT (17%)
C
(E)-2-hexenal 1-hexanol 2-heptanone 2-und
06-
0.4-
8

B 00- -
o 1 2
= decanal eucalyptol geranyl acetone hexanal linalool
L]
g 0.6 . GS infra-populational
o

o
-

o
~

UD.I . I I
[} il ' ' [l '
1 2 1 2 1 2

University of Florida Scenarios
é Felipe Ferrao

-

I I D GS Inter-populational
i 2

Metabolomlcs
Flavor

Felipe Ferrao
Breeding Program
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Can we unify prediction and discovery in a single framework? > Flavor

Felipe Ferrao
Breeding Program

a 7 o b
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University of Florida
é Felipe Ferrao
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Can we unify prediction and discovery in a single framework?
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Take home message

Prior biological information
can improve prediction
ability
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Present and future in blueberry

54



What is the future?

New methods

/NGE

Interactlon
Q
Non- Phenomlc
Gaussian Selection
Bayesian
Analyses

,\Optlmlzatlon

Simulation + Mate Allocation

University of Florida

J
e Felipe Ferrao

New traits
o G” ®
kL
Hpel%!'ttlgtlon Breeding
Harvest

Metabolomic Selection Artificial Intelligence

9 Computer
@ Visien A{ttifuinfia'
ntelligence
Metabologl\I,%SF (@ berryCV
Deep”
Iavd'r
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Genomic Selection 2.0

Questions
e (an we reduce the number of markers and optimize our training set?
e |s multi-omic predictions a good alternative?
e What is the impact of phenomics on fruit quality prediction?
e How Al can shape the future of modern breeding programs?

2 G | B | omas

°
Phenomic . il @y Computer
Selection Metabolomics pHim'Zagon Jim-hee Artificial Vision
lavor Breeding Program Intelligence
Paul Adunola Camila Azevedo 9 B L
Fibipreies: o i e Saang P Brecdng Progtam

Breeding Program

.~ University of Florida

e Felipe Ferrao
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Questions
e Can we reduce the number of markers and optimize our training se ’\

Optimization

Camila Azevedo

Breeding Program

University of Florida

e Felipe Ferrao
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How low can we go? Optimization
(Liamila Azevedo
3reecing Program

Probe 1 Probe 2 Probe n

Target Capture

Target Capture Sequencing
e 30k probes originally designed in 2013 (Ferrao et al,, 2018)
e |0k probes redefined after the reference genome (Benevenuto et al, 2019)
® Probes are targeting genomic regions aligning to the 4 homologous, and well distributed
e Different #SNPs per probe, and quality parameters

e’ Un.iversity~ of Florida Adunola et al,, 2023. Optimizing Genomic Selection in Blueberry. In [Qreparatioﬁ8
Felipe Ferrao
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Optimization

Genomic Selection 2.0

How low can we go?

Camila Azevedo
Breeding Program

Probe 1 Probe 2 Probe n
Target Capture
P ol Segregation
Seuencing updog Pedigree Repitability D?stogrtion .
Ranking
@ VaF S L N i g et s v :'.." 0060600000
é : ‘.. -':. é sn EE. % g .* 2 le
@ Call rate sl ot " 5 i H c ﬁ; % & §§
€© #5SNPs per probe * - - : s oo €2 i
Zalternative A matrix 1 2 5 n chi-squared n ZXnA
@ Modeling Bias © correlation (r2) © Repeatability | @ Distortion ji:fﬁ-’.'t‘;?ﬁé,lfa;;;:(lter
eOverdispersion (1,2,...,10)
@ Seauencing error
e Data-driven methods to select a final number of probes
e |tincludes quality and genetic information
e We used a selection index to weight all these information
University of Florida Adunola et al,, 2023. Optimizing Genomic Selection in Blueberry. In QreQaratioﬁg

Felipe Ferrao
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Simulation « Mate Alloca

Camila Azevedo

How low can we go?
Breeding Program

Marker Density
2500 probes

10Mb 15Mb 20Mb 25Mb 30Mb

(o g GO 11181 RE 111NN 10011000811 0 O N0 WO
Chr T WMWY WTITT 0 WO W T WO OO T T 0
ChraCL T T TIT IT T T T T TOITTITT TN T T TNTT T T TW T
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[ TINITITTTITINT
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cnnzﬂ—rrrrn—n_nrrnu T TITTT

5000 probes
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Adunola et al,, 2023. Optimizing Genomic Selection in Blueberry. In Qregaratioﬁo

University of Florida
é Felipe Ferrao
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How low can we go? Optimization

Camila Azevedo
Breeding Program

Can we keep reducing the number of probes?

# probes Brix Firmness TTA .
e Au(mk) .................... 03] .................................... O 50 .......................................... 042
S 2500032 .................................... 048 .......................................... 040
........ 500003204904]

e All prediction abilities computed in cross-validation
e Probes are regions in the genome where SNPs will be mapped
e 2500 probes (~25% of the total costs) results in good predictive ability for multiple traits

Unjversit;{ of Florida Adunola et al,, 2023. Optimizing Genomic Selection in Blueberry. In QreQaratioﬁ1
Felipe Ferrao
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How low can we go?

What about the TRN population ?

Is my old model still calibrated?

TRN

Population: ~2000 ind

5 Fruit Quality Traits

Model trained: 2014 & 2015
Blueberry Breeding Program

University of Florida
Felipe Ferrao

TST

Population: ~1000 ind

5 Fruit Quality Traits

Model trained: 2020 & 202
VacCap Population

~
%)

Optimjzation

Camila Azevedo
Breeding Program
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Genomic Selection 2.0

How low can we go?

What about the TRN population ?

Is my old model still calibrated?

TRN

Population: ~2000 ind

5 Fruit Quality Traits

Model trained: 2014 & 2015
Blueberry Breeding Program

TST

Population: ~1000 ind

5 Fruit Quality Traits

Model trained: 2020 & 202
VacCap Population

_ ]

How many new ind should | add?

University of Florida
Felipe Ferrao

How to select them?

~
%)

Optimjzation

Camila Azevedo
Breeding Program
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How low can we go? Optimization

) Camila Azevedo
Predictive ability optimized using different training population designs Breeding Program
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e’ Un.iversity~ of Florida Adunola et al,, 2023. Optimizing Genomic Selection in Blueberry. In Qregaratioﬁ4
Felipe Ferrao
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How low can we go?

D)

University of Florida
Felipe Ferrao

Predictive ability
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Optimjzation

Predictive ability optimized using different training population designs
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Take home message

Camila Azevedo
Breeding Program

We can reduce number of markers and optimize our
TRN population to maximize the accuracy
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Questions

e Is multi-omic predictions a good alternative?

University of Florida
Felipe Ferrao

®
Meomics

Flavor

Felipe Ferrao
Breeding Program
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Metabolomic Selection

()

Check for
updates |

Metabolomic selection for enhanced fruit flavor

Vincent Colantonio™', Luis Felipe V. Ferrao®’, Denise M. Tieman?, Nikolay Bliznyuk™“9, Charles Sims®, Harry J. Klee®?,

Patricio Munoz*2, and Marcio F. R. Resende Jr.?-2

2Horticultural Sciences Department, University of Florida, Gainesville, FL 32611; "Department of Agricultural and Biological Engineering, University of Florida,
Gainesville, FL32611; “Department of Biostatistics, University of Florida, Gainesville, FL32611; dDepar’(ment of Statistics, University of Florida, Gainesville, FL
32611; and °Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611

Contributed by Harry J. Klee; received August 27, 2021; accepted December 23, 2021; reviewed by Edward Buckler and Margaret Worthington

Although they are staple foods in cuisines globally, many commer-
cial fruit varieties have become progressively less flavorful over
time. Due to the cost and difficulty associated with flavor pheno-
typing, breeding programs have long been challenged in selecting
for this complex trait. To address this issue, we leveraged targeted
metabolomics of diverse tomato and blueberry accessions and
their corresponding consumer panel ratings to create statistical
and machine learning models that can predict sensory perceptions
of fruit flavor. Using these models, a breeding program can assess
flavor ratings for a large number of genotypes, previously limited
bv the low throuahput of consumer sensorv panels. The abilitv to

University of Florida

Felipe Ferrao

program. The difficulties associated with accurate flavor pheno-
typing have contributed to the lack of selection for fruit flavor
and thereby contributed to the widespread consumer belief that
commercial fruit flavor has declined (6, 7). Cheap and scalable
flavor selection methods would greatly benefit the breeding
process.

The main driver of fruit flavor perception is its chemical
composition. Fruits contain a diverse array of sugars, acids, and
volatiles whose concentrations are driven by genetic and envi-
ronmental effects. Sugars and acids are largely perceived by
tacte recentars an the tanone and the wvnlatilee hv recentare

(&)—~D)

Metabolomics
Flavor

Felipe Ferrao
Breeding Program
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Metabolomic Selection

Metabolomics
Flavor

How to evaluate flavor? Felipe Ferrao

Breeding Program

e Sensory Panels

-
e IR e Most accurate way to evaluate flavor preference is
7 Consumer " eeS000 by providing consumers with a sample set of
‘@000 diverse food and quantify their opinion
000800 e Limitations:
@000C0 .
Flavor tensit o Expensive
@008 0

o Time-consuming
o Low throughput

University of Florida 68

e Felipe Ferrao
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Metabolomic Selection .
Metabolomics
Flavor

How to evaluate flavor? Felipe Ferrao

Breeding Program

e Sensory Panels

9 Chemical Collection e Statistical Analyses
oSl Association Prediction

7 @8 000 =

Sweetness sample 1 sugar N

Sourness Sample 2 D § ﬂavor

0000 ) o sample 4 chemical
Flavor Itensity Sugar + acids R
Volatiles value
Predict consumer preferences using chemical and genetics information

University of Florida 69

e Felipe Ferrao
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Metabolomic Selection

1) Organized Historical Data

| Blueberry UF Breeding Progran

Tomato Blueberry
& @
<§) 209 samples 244 samples
= 34 Taste Panels 53 Taste Panels
= (2010-2015) (2012-2017)
’1’_ 2844 panelists 3763 panelists

& 68 VOCs + 6 Sugars/Acids 49 VOCs + 6 Sugars/Acids

Liking, Texture, Sweetnes,
=7  Sourness, Intensity, Salty,
Bitter, Umami

Liking, Texture, Sweetness,
Sourness, Intensity

.~ University of Florida
g Felipe Ferrao

@0

Metabolomics
Flavor

Felipe Ferrao
Breeding Program

Can we predict flavor preference?

We tested different machine learning and
statistical approaches for prediction
Historical sensory and chemical data
Tomato and blueberry as our biological models

70
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2 & Metabolomics
& _
or Flavor
XGBoost- 072 070 069 Felipe Ferrao
Gradient Boosting Machine- 072 0.68 0.68 Breeding Program
Random Forest- 0.70 0.65 0.62
Relevent Vector Machine- 0.69 0.68 0.67
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XGBoost- 072 0.62
Gradient Boosting Machine- 072 064
Random Forest- 0.70 0.65
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1
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Linear Support Vector Machine- 0.64 0.53
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Felipe Ferrao
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Genomic Selection 2.0

Metabolomic Selection

Metabolomics
Flavor

Felipe Ferrao
Breeding Program

2022 Blueberry Example

1060 blueberry samples

60 volatiles, 5 FQ traits and ~50K snps
Sensory: aroma (1-5) and liking (1-5)
Two breeders evaluated sensory traits

Multi-Kernel mixed model

Uni i f Florid . . . . .
e F;;;:T:selrrtg: orida Cazorso., 2024. A multi-omic roadmap for flavor prediction in blueberries. [n preparation 74
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Metabolomic Selection

2022 Blueberry Example

1060 blueberry samples

60 volatiles, 5 FQ traits and ~50K snps
Sensory: aroma (1-5) and liking (1-5)
Two breeders evaluated sensory traits
Multi-Kernel mixed model

University of Florida
Felipe Ferrao

y
Meomics

o Flavor

Felipe Ferrao
Breeding Program

liking_score aroma_score
0.8 1
3
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3
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Better predictive abilities when multiple
source of information are combined

Cazorso., 2024. A multi-omic roadmap for flavor prediction in blueberries. [n preparation
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Metabolomic Selection .
Metabolomics
r Flavor

Felipe Ferrao
Breeding Program

2022 Blueberry Example liking_score aroma_score

0.8-
e 1060 blueberry samples go.s-
e 60 volatiles, 5 FQ traits and ~50K snps < 4o
e Sensory: aroma (1-5) and liking (1-5) §02
e Two breeders evaluated sensory traits £

e Multi-Kernel mixed model 00—, T — RS R

g8egP8g 28°¢2¢8¢

> 5626 2 563 b

- -

Take home message & &
Multi-omic data is a valid tool for predicting complex traits

76

Uni i f Florid . . e . .
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Questions

e What is the impact of phenomics on fruit quality prediction?

Unive ty of Florida

e FlpF

IE

Phenomlc
Selection

Paul Adunola
PhD project

77
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Phenomic Selection

Selection

Paul Adunola
PhD project

University of Florida
Felipe Ferrao
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_ ) Selection
Phenomic Selection PaULACUNGTA

PhD project

Field year Stage # Plants Goal Selection Criteria

............ OO~]SOUOSS€SCross]ng+5eedl]ngs

............. | I20000ngh_denS]tynursery_smglePlantselectlon Vicual

.......... 2_4”2000Smgleplantselectlon .

LES M WO PemCoon-ooenmennicesn [ GO
10-15 AV 20 . Regional Yield Trial — Experimental design |  Gegy  +  metabolites  +

phenotypic data + sensory

University of Florida 79

e Felipe Ferrao
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_ ] Selection
Phenomic Selection

Paul Adunola
PhD project

EField year Stageé # Plants Goal Selection Criteria

............ OO~]SOUOSS€SCross]ng+5eedl]ngs

""""""" 1 | 20000  High-density nursery- Single Plant Selection | Visual

.......... 2_4”2000Smgleplantselectlon .

59 W 200 remConditon-Experimentaldesin [T L, R S
10-5 IV 20 . Regional Yield Trial — Experimental design |  Gegy  +  metabolites  +

phenotypic data + sensory

University of Florida

80
e Felipe Ferrao
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Genomic Selection 2.0 Phenomic
Phenomic Selection o ffl‘;"

PhD project

Motivation Phenomic Selection

e Near-infrared spectroscopy (NIRS) is a non-destructive high-throughput method

e |t is based on the absorption of electromagnetic radiation in the near-infrared region

e While NIR has been used to predict target traits, recent studies suggested phenomic
selection as a low-cost and high-throughput method

University of Florida 81
Felipe Ferrao
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Genomic Selection 2.0 Phenomic
Phenomic Selection Pa? f:n::\:n

PhD project

Motivation Phenomic Selection

e Near-infrared spectroscopy (NIRS) is a non-destructive high-throughput method

e |t is based on the absorption of electromagnetic radiation in the near-infrared region

e While NIR has been used to predict target traits, recent studies suggested phenomic
selection as a low-cost and high-throughput method
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.~ University of Florida Wavelength (nm) N T 00 05 1.0 82

g Felipe Ferrao
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Genomic Selection 2.0 Phen%;mic

) ) Selection
Phenomic Selection PG
PhD project
Material and Methods
° Population Size: ~4OO 'Iﬂd Bloom “ Brix ][ Brix. TTA ][ Firmness ” Size |[ TTA ]
e  MicroNIR OnSite-W kit: 900-1700 wavelength
e Tissue: mature berries .
e Model: P-GBLUP (multi kernel mixed model)
Z
G 04 Method
g NIR
2 Pedigree+NIR
I I I I =
o
0.2 I I
0.0 |
é lee:‘hip‘J':rFs;rrtg:f Florida Adunola and Tavares et al, 2023. Phenomic Selection in Blueberry. In preparation 83
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) ] Selection
Phenomic Selection

Paul Adunola
PhD project

Material and Methods

e  Population Size: ~400 ind e R
e  MicroNIR OnSite-W kit: 900-1700 wavelength
e  Tissue: mature berries -
e Model: P-GBLUP (multi kernel mixed model)
0

Be careful...
e Very sensitive to GxE
e Very sensitive to tissue (berry vs. fruit vs. juice)
e  Working in progress

Predictive ability

. Method
NIR
Pedigree+NIR
Genomic+N|R
Genomic
é University of Florida

. 4 Adunola and Tavares et al, 2023. Phenomic Selection in Blueberry. In preparation 84
Felipe Ferrao
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) ] Selection
Phenomic Selection

Paul Adunola
PhD project

Material and Methods

e  Population Size: ~400 ind e R
e  MicroNIR OnSite-W kit: 900-1700 wavelength
e  Tissue: mature berries -
e Model: P-GBLUP (multi kernel mixed model)
0

Be careful...
° Very sensitive to GxE
e Very sensitive to tissue (berry vs. fruit vs. juice)
e Working in progress

Predictive ability

Take home message

An alternative to genomic selection

. Method
NIR
Pedigree+NIR
Genomic+N|R
Genomic
é University of Florida

. 4 Adunola and Tavares et al, 2023. Phenomic Selection in Blueberry. In preparation 85
Felipe Ferrao
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Questions

@ T
Computer

Artificial Vision

e How Al can shape the future of modern breeding programs? Intelligence

Bruno Leme
Breed jram Breeding Program

University of Florida 86
Felipe Ferrao
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Genomic Selection 2.0

Artificial Intelligence
—
® @) &

Phenomics Genomics Metabolites

T

Y = f(X) + e

Can we collect Mixed Models
better Bayesian Models
phenotypes? Machine Learning

Deep Learning

University of Florida
Felipe Ferrao

D

Artificial
Intelligence

Bruno Leme
Breeding Program

Computer
Visien

Bruno Leme
reeding Program
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Genomic Selection 2.0 @ Tomputer

Artificial Intelligence

Motivation

‘:)‘. )

- Y )
Qi et al., 2019. doi.org/10.1186/s12870-019-2073-7

.~ University of Florida
e Felipe Ferrao

Artificial
Intelligence
Bruno Leme Bruno Leme
Breeding Program Breeding Program

Vision

The naturally occurring cuticular wax covering the fruit (ak.a
bloom) is what gives the blueberries their whitish looking
Important for consumers, post-harvest and disease resistance
Trait traditionally scored using visual scales

88
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- Computer
e | M ntaligence Visien
Artificial Intelligence

Bruno Leme Bruno Leme
Breeding Program Breeding Program

Motivation

® The naturally occurring cuticular wax covering the fruit (ak.a
bloom) is what gives the blueberries their whitish looking

e |mportant for consumers, post-harvest and disease resistance
e Trait traditionally scored using visual scales

University of Florida 89
Felipe Ferrao
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Artiflclal Visien
. . . ntelligence
Artificial Intelligence ey sl

@ Data Collection berryCV

— Feature Extraction e
= 'TE]E? © Phyton-based computer vision workflow
066, O, N for fruit quality phenotyping in blueberry
clamshell QRcodes
v QR Model for maskin:
metadata g
pyzbar - Python gfg;-asr?)?xglsgrgids
® ©00GcOO L @ Output results
o E No-bloom area P
o 00000 ' j Bloom model Bloom area
\J descriptors Scar area Output Folder Output File
[} ggggg Bloom factor — |_H
° NI > + =
Excel
: . Linear and Area
® Raw input images color descriptors | Perimeter Dt forsampl
Ellipse ratio . ples
o ) Masked Sample Lt Height categorized by QR
@) individual berries Images Width metadata and
@ reference OpenCV - Python RGB data individual berry ID
HSV data
L*a*b data

Ferrdo et al, 2024. Computer vision tool integrated to genome-wide association identifies candidate
b Un.lverSIty~ of Florida genetic loci controlling waxy bloom in blueberries. In preparation 90
Felipe Ferrao



Genomic Selection 2.0 @ Tomputer

) ) ) Artificial Visien
Artificial Intelligence

Intelligence
Bruno Leme
reeding Program

berryCV vs. Traditional Visual scores
e Across different time-points during the post-harvest
e Higher heritability values

Broad-sense Narrow-sense

|:| Computer vision tool
0.50- —I_ —I‘ —I_ I:I Visual scores

ki)

0.00- l

. . . ' ' ! ! ' .
1day 1week 3weeks 7weeks Across_Time 1day 1week 3weeks 7weeks Across_Time

0.25-

Ferrdo et al, 2024. Computer vision tool integrated to genome-wide association identifies candidate
b Un.lverSIty~ of Florida genetic loci controlling waxy bloom in blueberries. In preparation 91
Felipe Ferrao
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Artificial Visien
. . . ntelligence
Artificial Intelligence Bruno Leme

Breeding Program Breeding Program

mvLMM
berryCV
— 510165063

§ 8 34139681

-log10(p.value)
O = N W & 00 O
L1 1 1
>
)
)
b.

e Hits identified only using computer vision

Ferrdo et al, 2024. Computer vision tool integrated to genome-wide association identifies candidate

e’ University of Florida genetic loci controlling waxy bloom in blueberries. In preparation 92

Felipe Ferrao
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Artificial Intelligence

GDSL lipolytic enzyme family
Genes expressed in the epidermal cells ,
also reported for tomato and pepper

mvLMM
berryCV
6 — 5.10165063

? 5 - 3
3 44 ° e ¢ o
g . w s ,.'. .
g 3 x‘. ° < :'o . by N °
3 2 - o, ° d o ° o . I ‘@ &
H L]
] 0 |

1 2 3 4 5 6 7

e Hits identified only using computer vision

D

Artificial
Intelligence

Bruno Leme
Breeding Program

salicylic acid methyl transferase
recent studies in blueberry have
reported a direct effect of salicylic acid
on the cuticular wax during storage

8_34139681
.
H
‘., ¢
2 .
8 5
11 12

Computer

Vision

Bruno Leme
Breeding Program

Ferrdo et al, 2024. Computer vision tool integrated to genome-wide association identifies candidate

University of Florida
Felipe Ferrao

genetic loci controlling waxy bloom in blueberries. In preparation
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Artificial Intelligence

-log10(p.value)

o = N W OO

GDSL lipolytic enzyme family
Genes expressed in the epidermal cells ,
also reported for tomato and pepper

mvLMM
berryCV
510165063
°
°
o
. . o e
g e % ¢ .J'
* s, » 3 I%° *

e Hits identified only using computer vision

University of Florida
Felipe Ferrao

@ T
Computer

Artificial Vision
Intelligence
Bruno Leme

Bruno Leme
reeding Program Breeding Program

B

salicylic acid methyl transferase
recent studies in blueberry have
reported a direct effect of salicylic acid
on the cuticular wax during storage

]

“ « .
“ﬁ

11 12

Take home message

8 34139681
e

Al can improve data collection and shed
new light on the genetic architecture
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Conclusions BMW‘!/ o

Final considerations

Other key tools used to support breeding decisions

1) To predict the future: stochastic simulations
2) To optimize the future: mate allocation for design crosses
3) To save time and money: Marker-Assisted Selection (MAS) for seedling selections



Conclusions BMW‘!/ o

Final considerations

Other key tools used to support breeding decisions

4)  For biological validation: new protocols for transformation and gene editing
5) For an effective use of plant genetic resources: pre-breeding and introgressions
6) To speed up: testing a new generation of techniques for speed-breeding



Conclusions

Final considerations

Other key tools used to support breeding decisions

7)  Artificial Intelligence is everywhere:
a) Sensory Panels (DeepFlavor)
b) Field data collection (Computer Vision)
c)  New methods for prediction

Blueh

BREEDING PRO

A4S



Conclusions BMW‘!/ o

Final considerations

Seven main lessons from the last 7 years

Genomic Selection works!

Solid gains using data driven methods

Prefer statistical genetics methods designed for polyploid systems

"Simplicity is the Ultimate Sophistication"l: on the Relevance of Additive GBLUP Models
GS can be optimized, after having a good understanding about the breeding pipeline
Knowledge is power: decisions based on multi-layer (or omics) on information

Al has an important play to role on data collection and analyses

1 Quote by Leonardo da Vinci

University of Florida

e Felipe Ferrao
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Conclusions BMW‘!/ o

Final considerations

My personal opinion for practical implementation in polyploids:
e (Genomic selection is a tool to assist breeding and not the other way around
e |Implementation require a solid breeding program
e (Genotyping might be not so easy and cheap
e (ollect good phenotype is imperative
e Test new methods is valid. But don't forget to include an additive GBLUP as a benchmark
e (Genomic Selection is multidisciplinary topic

e Biological discovery and prediction can run side-by-side

University of Florida 100

e Felipe Ferrao
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Abstract #53389
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Genomic Selection 2.0

Questions

OMAS

Jim-hee
Breeding Program

o Is marker-assisted selection an alternative for seedlings selections?

University of Florida 105

e Felipe Ferrao



Genomic Selection 2.0 QOMAS

Marker-assisted selection (MAS) L o

Motivation
e First breeding stages generates large volume of seedlings (~20.000)
e Moving all plants to the field is expensive and time-consuming for evaluation
e Genomic Selection is not an alternative at this level ($$$%)
e (Can we use few markers, for key traits, to discard plants at the greenhous level?

University of Florida 106

e Felipe Ferrao



Genomic Selection 2.0 QOMAS

Marker-assisted selection (MAS) L o

Motivation
e First breeding stages generates large volume of seedlings (~20.000)
e Moving all plants to the field is expensive and time-consuming for evaluation
e Genomic Selection is not an alternative at this level ($$$%)
e (Can we use few markers, for key traits, to discard plants at the greenhous level?

Goals
e Develop arapid and cheap assay for DNA extraction
e [Establish protocols for SNP genotyping using HRM and KASP
e \alidate association between markers and phenotypes

University of Florida 107

e Felipe Ferrao
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omarker assisted

Marker-assisted selection (MAS) B e

(a)

Liking
Sweetness
Texture
Intensity
Sourness
Soluble solids
1-Hexanol
2-Undecanone
2-Nonanone
Seranyl acetone
D-limonene
Linalool
2-Heptanone
Hexanal

) Eucalyptol

(E)-2-Hexanal --
TA ..

Sensory

.~ University of Florida

e Felipe Ferrao

Sweetness

sensory~VOC
Eucalyptol negatively impact consumer preference

o
£
=
)

Texture
Intensity

Sourness

Soluble solids
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2-Undecanone

2-Nonanone
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Biochemical Ferrao et al,, (2020)
i https://doi.org/10.111/nph 16459
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Genomic Selection 2.0 OMAS

Marker-assisted selection (MAS) B e
sensory~VOC Genome-wide association analyses
Eucalyptol negatively impact consumer preference Eucalyptol has a simple genetic architecture
@ l 2 @ é 5 § g g 2 g 5 g
2o 28058532z 8sst Eucalyptol
282 §5338ssEseggQ
T3 83T 3adaSy2aucs 3 ~12 .
Liking .. % 5 ]
Sweetness .. 0.8 ; """""" 3 § Pl S R N R oo
Texture . ° 4 o @ o d
Intensity . 0.6 0 “ | ﬁ . h ; . . “ : \I
Sourness ._.. 1 2 3 4 5 6 7 8 9 10 11 12
Soluble solids 9 chromosome
1-Hexanol . 0.2
2-Undecanone .
2-Nonanone . 0 TﬁS TPSTES TﬁS T?S Tes TPSTﬁs
Seranyl acetone .. * 2
D-imonene Em e - () B B B¢ - e
Li Joshat T b0 Py seatecor adacon ek Py a0 A
aloo! . -04 35,506,148 36,591,864 36,691,137 37,621377
2-Heptanone . .
Hexanal .. - . -0.6
) Eucalyptol .
(Ey2-Hexanal [ BN B -0.8
™ _1
— R——— Ferrao et al., (2020)
scales components https://doi.org/10.11M/nph.16459
. University of Florida 109

e Felipe Ferrao
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Marker-assisted selection (MAS)

KASP markers

e Target: Eucalyptol
Population: 384 individuals

e Single marker explaining > 50%
phenotypic variance

.~ University of Florida

e Felipe Ferrao
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Breeding Program
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Marker-assisted selection (MAS)

KASP markers

e Target: Eucalyptol
Population: 384 individuals

e Single marker explaining > 50%
phenotypic variance

Multiplex vs. Duplex
Discriminate high vs. low eucalyptol

.~ University of Florida
e Felipe Ferrao

Frequency

al1sx
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; marker assisted

Jim-hee
Breeding Program
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Genomic Selection 2.0

Marker-assisted selection (MAS)

Can we combine markers?

e Markers from two different chromosomes

e Markerl + Marker2 = pseudo-haplotyple

e Pseudo-haplotypes 22 (duplex-duplex) and 23 (duplex-triplex) high levels of eucalyptol

University of Florida

e Felipe Ferrao
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QMAS

Jim-hee
Breeding Program
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Genomic Selection 2.0

Marker-assisted selection (MAS)

Can we combine markers?

e Markers from two different chromosomes

e Markerl + Marker2 = pseudo-haplotyple
e Pseudo-haplotypes 22 (duplex-duplex) and 23 (duplex-triplex) high levels of eucalyptol

University of Florida

e Felipe Ferrao

2e+07  3e+07

1e+07

0e+00

— o e oy

OMAS

Jim-hee

Breeding Program

Take home message

Cheap and low density marker
platforms can be used to discard
plants in the seedling stage

03 20

tmp1$haplo1

21

22

23
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What is the impact of genomic selection in the long term? Optimization

Camila Azevedo
Breeding Program

Simulation
e We can use stochastic oriented simulation to project the future
e Oriented because we can use real information from the breeding program
e AlphaSim package, to simulate a complex trait (h2=0.30, 100 QTL)

University of Florida 114

e Felipe Ferrao
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Genomic Selection 2.0 o)

What is the impact of genomic selection in the long term? Optimization

Camila Azevedo
Breeding Program

Simulation
e We can use stochastic oriented simulation to project the future
e Oriented because we can use real information from the breeding program
e AlphaSim package, to simulate a complex trait (h2=0.30, 100 QTL)

77777777 PR DGR Nl Steoe v ] D

20,000 plants| 2,000 plants | L 200 plants | I S

. — Mate allocation
Selection Criteria for GS

PARENTAL SELECTION 1. GEBV based on

1. Massal Selection parental means (GS)

2. EBV (A-BLUP) : .
: 2. GEBV + SimpleMatting
3. GEBV (G-BLUP) (GS -Opt)

University of Florida 115

e Felipe Ferrao
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What is the impact of genomic selection in the long term? Optimization
B e
Simulation

e We can use stochastic oriented simulation to project the future
e Oriented because we can use real information from the breeding program
e AlphaSim package, to simulate a complex trait (h2=0.30, 100 QTL)

Example from AlphaMate

Rate of coancestry

Stage | | D Stage Il | D Stage Ill ‘ D Stage IV D : ; ;

J 20 plant:
! 20,000 plants| 2,000 plants | 200 plants L plants |

Mate allocation

Selection Criteria for GS 5
PARENTAL SELECTION ) 1. GEBV based on g
T S, 1. Massal Selection p;':lrental means (GS) g
2. EBV (A-BLUP) s : s
: 2. GEBV + SimpleMatting
3. GEBV (G-BLUP) (GS -Opt)

- v T v
0 25 50 75 100
Minimum coancestry (%)

e University of Florida 116
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Genomic Selection 2.0

What is the impact of genomic selection in the long term?

Phenotypic Value

140 180 220

100

Mean Performance

eg°8°2°,
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time

Variance Value

10 20 30 40 50 60

0

Variance Performance

\®
° \- .\.
“ ‘e =
o \g"\\:/o\ n
o N\
°® "I. s
e®,0cdctisss
T T T T
5 10 15 20
time

Azevedo et al, 2023. Stochastic Simulation in Blueberry. In preparation

University of Florida
Felipe Ferrao

~
%)

Optimjzation

Camila Azevedo
Breeding Program

117



J

Genomic Selection 2.0

What is the impact of genomic selection in the long term? Optimization
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Take home message

GS and mate allocation can
maximize the gains in the
long term
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