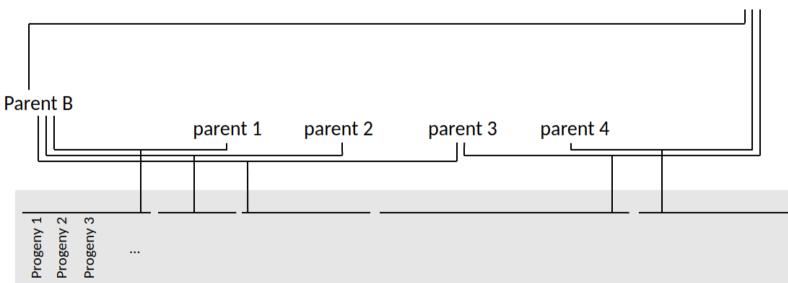
Investigating genotype-phenotype relationships for tuber bruising in autotetraploid potatoes

Tools for Polyploids Training Workshop 2022

O. Angelin-Bonnet, S. Thomson, P. J. Biggs, M. Vignes, S. Baldwin


Massey University, New Zealand

14 January 2022

Introduction

Research question: investigate the molecular mechanisms of tetraploid potato bruising

Multi-factorial design: half-sibling progeny samples, from a breeding programme

Parent A

Genomics data

Capture by sequencing using exon capture:

- baits designed to target exons, reflect exon density
- 178 samples (160 progeny genotypes and 13 parent genotypes)
- Genotype calling with polyRAD: 454,246 biallelic SNPs (after filtering)

Phenotypic data

Bruising experiment performed on a subset of the progeny data:

- Tubers bruised by throwing weight from controlled height
- Image of the bruised site taken after 24h
- Bruising scored visually on a scale from 0 (no bruising) to 5 (extensive bruising)

Other phenotypes recorded: dry matter, sugar content, maturity, vigour, etc.

Molecular data

Transcriptomics data

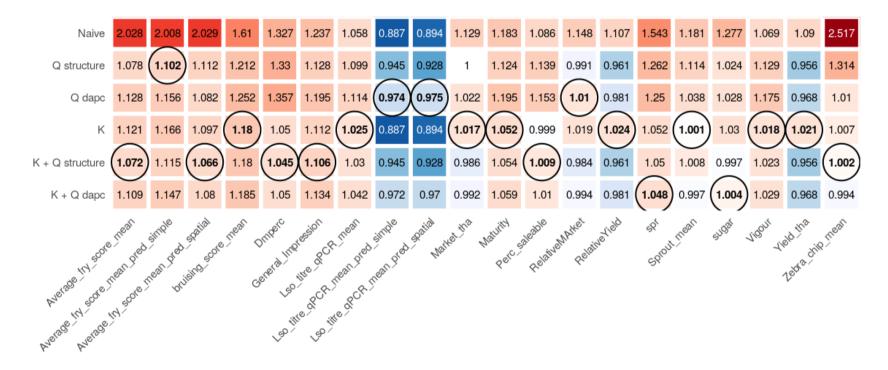
- RNA sequencing for 100 progeny samples
- 25,163 transcripts measured (after filtering)

Metabolomics data

- LC-MS for 122 progeny samples, each with 2 biological replicates
- 4,604 compounds measured
- Compounds identification main bottleneck for this dataset

Genome-Wide Association Study

With GWASpoly


GWAS analysis

- Used the GWASpoly package
- Population structure explored with STRUCTURE and DAPC (adegenet R package)
- For each trait of interest, tested 8 genetic models imes 6 population models:

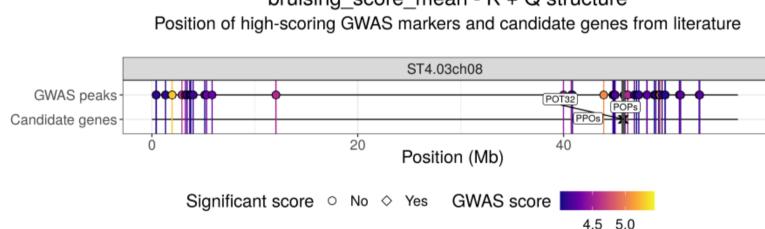
Population model	Kinship matrix	Subopulations membership probabilities as covariates
Naive model	-	-
K model	LOCO method	-
$Q_{STRUCTURE}$ model	-	STRUCTURE
Q_{DAPC} model	-	DAPC
$K + Q_{STRUCTURE}$ model	LOCO method	STRUCTURE
$K+Q_{DAPC} { m model}$	LOCO method	DAPC

Correcting for population structure

For each trait, average inflation factor over all genetic models used to select the best population model:

Ideal average inflation factor is closest to 1 and > 1.

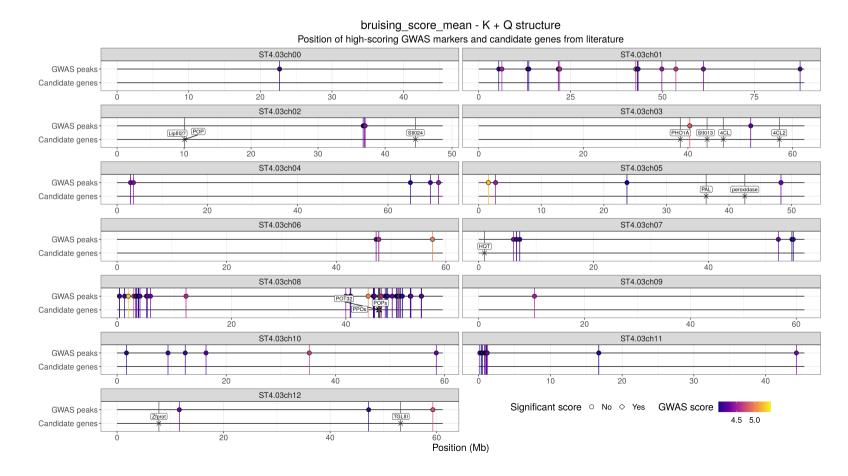
Significant QTLS


- Used Meff method to compute significance threshold
- Had to adapt the function since cannot handle that many variants

Trait

Average_fry_score_mean								
Average_fry_score_mean_pred_simple								
Average_fry_score_mean_pred_spatial				1	1	1		
bruising_score_mean-								
Dmperc -								
General_Impression-	73	4	37	5	6	3	3	1
Lso_titre_qPCR_mean-	8	2	16	3	6	4		1
Lso_titre_qPCR_mean_pred_simple-								
Lso_titre_qPCR_mean_pred_spatial								
Market_tha-								
Maturity -							3	
Perc_saleable-								
RelativeMArket-								
RelativeYield-								
spr-		2	2	2	2	1		
Sprout_mean-			1	1	1		1	
sugar-								
Vigour-								
Yield_tha-								
Zebra_chip_mean-								
	general	additive	diplo-genera		e 1-dom-alt odel	1-dom-ref	2-dom-alt	2-dom-ref

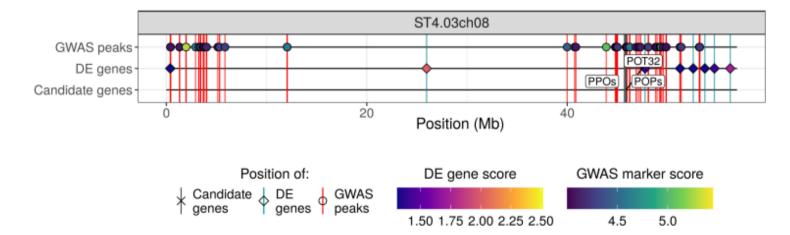
GWAS score peaks vs known QTLS and candidate genes


Comparing genomic position of variants with unadjusted p-value $< 10^{-4}$ with position of QTL regions identified by previous studies:

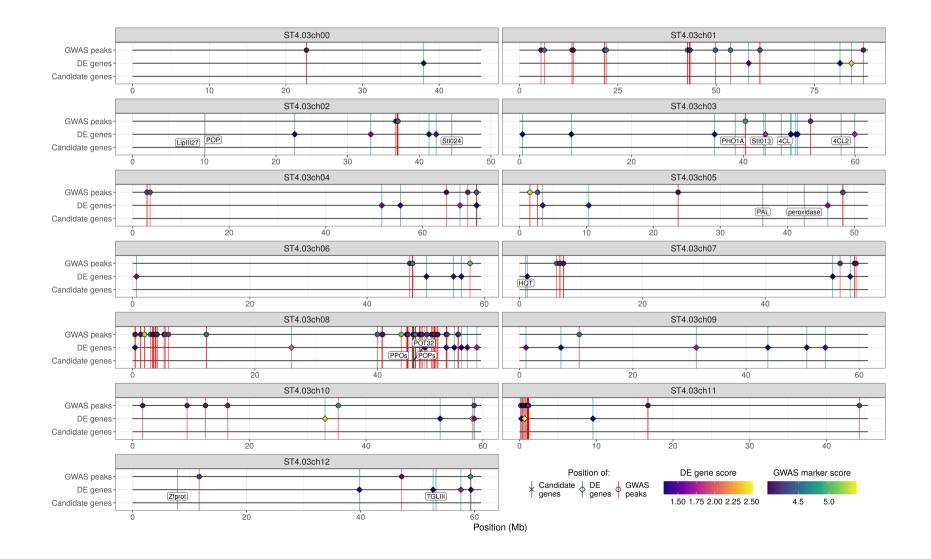
bruising_score_mean - K + Q structure

GWAS score peaks vs known QTLS and candidate genes

Comparing genomic position of variants with unadjusted p-value $< 10^{-4}$ with position of QTL regions identified by previous studies:


Transcriptomics differential expression

Transcriptomics differential expression

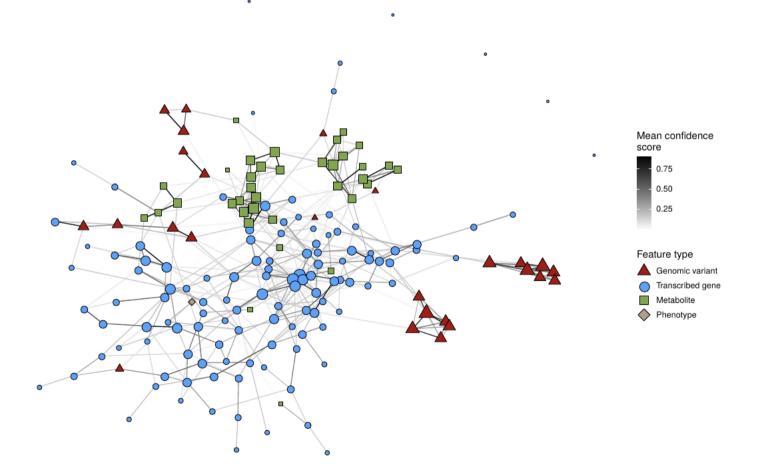

Used the DESeq2 package for transcriptomics differential expression analysis:

- 30 up-regulated genes
- 27 down-regulated genes

Can compare the results from the GWAS and differential expression analyses:

Transcriptomics differential expression to interpret GWAS results

Multi-omics data integration


Feature selection using DIABLO

Used DIABLO from the mixOmics package to select variants, transcripts and compounds associated with the tuber bruising score.

- "Low bruising score" samples vs "high bruising score" samples
- DIABLO selected transcripts and compounds not found differentially expressed (e.g. glutathione-S-transferase transcript)
- Caveat: population structure influences which variants are selected \Rightarrow restricted the variants to only those with a high GWAS score

Reconstruction of a multi-omics network

Used several causal inference methods to assess the causal relationships between the selected features.

Conclusion

Take-home message

- Genomics data from breeding programme can be useful to locate genomic regions associated with a trait of interest
- Addition of other omics data (e.g. transcriptomics and metabolomics) can provide an alternative way to detect potential causal genes or biological pathways associated with a trait of interest

Acknowledgements

- Samantha Baldwin (PFR)
- Susan Thomson (PFR)
- Matthieu Vignes (Massey)
- Patrick Biggs (Massey)

- Rebecca Bloomer (PFR)
- Katrina Monaghan (PFR)
- Nigel Joyce (PFR)
- Martin Shaw (PFR)

Thank you for your attention!

Any questions?